This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class X is not a vertex of a graph G , then it has an empty closed neighborhood in G . (Contributed by AV, 8-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clnbgrel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | clnbgrnvtx0 | ⊢ ( 𝑋 ∉ 𝑉 → ( 𝐺 ClNeighbVtx 𝑋 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | csbfv | ⊢ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | 1 2 | eqtr4i | ⊢ 𝑉 = ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) |
| 4 | neleq2 | ⊢ ( 𝑉 = ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) → ( 𝑋 ∉ 𝑉 ↔ 𝑋 ∉ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( 𝑋 ∉ 𝑉 ↔ 𝑋 ∉ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) ) |
| 6 | 5 | biimpi | ⊢ ( 𝑋 ∉ 𝑉 → 𝑋 ∉ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) ) |
| 7 | 6 | olcd | ⊢ ( 𝑋 ∉ 𝑉 → ( 𝐺 ∉ V ∨ 𝑋 ∉ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) ) ) |
| 8 | df-clnbgr | ⊢ ClNeighbVtx = ( 𝑔 ∈ V , 𝑣 ∈ ( Vtx ‘ 𝑔 ) ↦ ( { 𝑣 } ∪ { 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) ) | |
| 9 | 8 | mpoxneldm | ⊢ ( ( 𝐺 ∉ V ∨ 𝑋 ∉ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) ) → ( 𝐺 ClNeighbVtx 𝑋 ) = ∅ ) |
| 10 | 7 9 | syl | ⊢ ( 𝑋 ∉ 𝑉 → ( 𝐺 ClNeighbVtx 𝑋 ) = ∅ ) |