This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The double nand expressed in terms of pure nand. (Contributed by Anthony Hart, 2-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df3nandALT1 | ⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( 𝜑 ⊼ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman | ⊢ ( ( 𝜑 → ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) ) | |
| 2 | imnan | ⊢ ( ( 𝜓 → ¬ 𝜒 ) ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) | |
| 3 | 2 | biimpi | ⊢ ( ( 𝜓 → ¬ 𝜒 ) → ¬ ( 𝜓 ∧ 𝜒 ) ) |
| 4 | 3 3 | jca | ⊢ ( ( 𝜓 → ¬ 𝜒 ) → ( ¬ ( 𝜓 ∧ 𝜒 ) ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) ) |
| 5 | 2 | biimpri | ⊢ ( ¬ ( 𝜓 ∧ 𝜒 ) → ( 𝜓 → ¬ 𝜒 ) ) |
| 6 | 5 | adantl | ⊢ ( ( ¬ ( 𝜓 ∧ 𝜒 ) ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) → ( 𝜓 → ¬ 𝜒 ) ) |
| 7 | 4 6 | impbii | ⊢ ( ( 𝜓 → ¬ 𝜒 ) ↔ ( ¬ ( 𝜓 ∧ 𝜒 ) ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) ) |
| 8 | df-nan | ⊢ ( ( 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) | |
| 9 | 8 8 | anbi12i | ⊢ ( ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ↔ ( ¬ ( 𝜓 ∧ 𝜒 ) ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) ) |
| 10 | 7 9 | bitr4i | ⊢ ( ( 𝜓 → ¬ 𝜒 ) ↔ ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) |
| 11 | 10 | imbi2i | ⊢ ( ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ↔ ( 𝜑 → ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
| 12 | df-nan | ⊢ ( ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ↔ ¬ ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) | |
| 13 | 12 | anbi2i | ⊢ ( ( 𝜑 ∧ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ↔ ( 𝜑 ∧ ¬ ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
| 14 | 13 | notbii | ⊢ ( ¬ ( 𝜑 ∧ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
| 15 | 1 11 14 | 3bitr4i | ⊢ ( ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ↔ ¬ ( 𝜑 ∧ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
| 16 | df-3nand | ⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) | |
| 17 | df-nan | ⊢ ( ( 𝜑 ⊼ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ↔ ¬ ( 𝜑 ∧ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) | |
| 18 | 15 16 17 | 3bitr4i | ⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( 𝜑 ⊼ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |