This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xms | ⊢ ∞MetSp = { 𝑓 ∈ TopSp ∣ ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cxms | ⊢ ∞MetSp | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | ctps | ⊢ TopSp | |
| 3 | ctopn | ⊢ TopOpen | |
| 4 | 1 | cv | ⊢ 𝑓 |
| 5 | 4 3 | cfv | ⊢ ( TopOpen ‘ 𝑓 ) |
| 6 | cmopn | ⊢ MetOpen | |
| 7 | cds | ⊢ dist | |
| 8 | 4 7 | cfv | ⊢ ( dist ‘ 𝑓 ) |
| 9 | cbs | ⊢ Base | |
| 10 | 4 9 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 11 | 10 10 | cxp | ⊢ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) |
| 12 | 8 11 | cres | ⊢ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) |
| 13 | 12 6 | cfv | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) |
| 14 | 5 13 | wceq | ⊢ ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) |
| 15 | 14 1 2 | crab | ⊢ { 𝑓 ∈ TopSp ∣ ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) } |
| 16 | 0 15 | wceq | ⊢ ∞MetSp = { 𝑓 ∈ TopSp ∣ ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) } |