This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xms | |- *MetSp = { f e. TopSp | ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cxms | |- *MetSp |
|
| 1 | vf | |- f |
|
| 2 | ctps | |- TopSp |
|
| 3 | ctopn | |- TopOpen |
|
| 4 | 1 | cv | |- f |
| 5 | 4 3 | cfv | |- ( TopOpen ` f ) |
| 6 | cmopn | |- MetOpen |
|
| 7 | cds | |- dist |
|
| 8 | 4 7 | cfv | |- ( dist ` f ) |
| 9 | cbs | |- Base |
|
| 10 | 4 9 | cfv | |- ( Base ` f ) |
| 11 | 10 10 | cxp | |- ( ( Base ` f ) X. ( Base ` f ) ) |
| 12 | 8 11 | cres | |- ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) |
| 13 | 12 6 | cfv | |- ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) |
| 14 | 5 13 | wceq | |- ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) |
| 15 | 14 1 2 | crab | |- { f e. TopSp | ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) } |
| 16 | 0 15 | wceq | |- *MetSp = { f e. TopSp | ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) } |