This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of all walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks . w = (/) has to be excluded because a walk always consists of at least one vertex, see wlkn0 . (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wwlks | ⊢ WWalks = ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwwlks | ⊢ WWalks | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | vw | ⊢ 𝑤 | |
| 4 | cvtx | ⊢ Vtx | |
| 5 | 1 | cv | ⊢ 𝑔 |
| 6 | 5 4 | cfv | ⊢ ( Vtx ‘ 𝑔 ) |
| 7 | 6 | cword | ⊢ Word ( Vtx ‘ 𝑔 ) |
| 8 | 3 | cv | ⊢ 𝑤 |
| 9 | c0 | ⊢ ∅ | |
| 10 | 8 9 | wne | ⊢ 𝑤 ≠ ∅ |
| 11 | vi | ⊢ 𝑖 | |
| 12 | cc0 | ⊢ 0 | |
| 13 | cfzo | ⊢ ..^ | |
| 14 | chash | ⊢ ♯ | |
| 15 | 8 14 | cfv | ⊢ ( ♯ ‘ 𝑤 ) |
| 16 | cmin | ⊢ − | |
| 17 | c1 | ⊢ 1 | |
| 18 | 15 17 16 | co | ⊢ ( ( ♯ ‘ 𝑤 ) − 1 ) |
| 19 | 12 18 13 | co | ⊢ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) |
| 20 | 11 | cv | ⊢ 𝑖 |
| 21 | 20 8 | cfv | ⊢ ( 𝑤 ‘ 𝑖 ) |
| 22 | caddc | ⊢ + | |
| 23 | 20 17 22 | co | ⊢ ( 𝑖 + 1 ) |
| 24 | 23 8 | cfv | ⊢ ( 𝑤 ‘ ( 𝑖 + 1 ) ) |
| 25 | 21 24 | cpr | ⊢ { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } |
| 26 | cedg | ⊢ Edg | |
| 27 | 5 26 | cfv | ⊢ ( Edg ‘ 𝑔 ) |
| 28 | 25 27 | wcel | ⊢ { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) |
| 29 | 28 11 19 | wral | ⊢ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) |
| 30 | 10 29 | wa | ⊢ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ) |
| 31 | 30 3 7 | crab | ⊢ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ) } |
| 32 | 1 2 31 | cmpt | ⊢ ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ) } ) |
| 33 | 0 32 | wceq | ⊢ WWalks = ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ) } ) |