This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of all walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks . w = (/) has to be excluded because a walk always consists of at least one vertex, see wlkn0 . (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wwlks | |- WWalks = ( g e. _V |-> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwwlks | |- WWalks |
|
| 1 | vg | |- g |
|
| 2 | cvv | |- _V |
|
| 3 | vw | |- w |
|
| 4 | cvtx | |- Vtx |
|
| 5 | 1 | cv | |- g |
| 6 | 5 4 | cfv | |- ( Vtx ` g ) |
| 7 | 6 | cword | |- Word ( Vtx ` g ) |
| 8 | 3 | cv | |- w |
| 9 | c0 | |- (/) |
|
| 10 | 8 9 | wne | |- w =/= (/) |
| 11 | vi | |- i |
|
| 12 | cc0 | |- 0 |
|
| 13 | cfzo | |- ..^ |
|
| 14 | chash | |- # |
|
| 15 | 8 14 | cfv | |- ( # ` w ) |
| 16 | cmin | |- - |
|
| 17 | c1 | |- 1 |
|
| 18 | 15 17 16 | co | |- ( ( # ` w ) - 1 ) |
| 19 | 12 18 13 | co | |- ( 0 ..^ ( ( # ` w ) - 1 ) ) |
| 20 | 11 | cv | |- i |
| 21 | 20 8 | cfv | |- ( w ` i ) |
| 22 | caddc | |- + |
|
| 23 | 20 17 22 | co | |- ( i + 1 ) |
| 24 | 23 8 | cfv | |- ( w ` ( i + 1 ) ) |
| 25 | 21 24 | cpr | |- { ( w ` i ) , ( w ` ( i + 1 ) ) } |
| 26 | cedg | |- Edg |
|
| 27 | 5 26 | cfv | |- ( Edg ` g ) |
| 28 | 25 27 | wcel | |- { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) |
| 29 | 28 11 19 | wral | |- A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) |
| 30 | 10 29 | wa | |- ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) |
| 31 | 30 3 7 | crab | |- { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } |
| 32 | 1 2 31 | cmpt | |- ( g e. _V |-> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } ) |
| 33 | 0 32 | wceq | |- WWalks = ( g e. _V |-> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } ) |