This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than x , see definition in ApostolNT p. 75. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-chp | ⊢ ψ = ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cchp | ⊢ ψ | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cr | ⊢ ℝ | |
| 3 | vn | ⊢ 𝑛 | |
| 4 | c1 | ⊢ 1 | |
| 5 | cfz | ⊢ ... | |
| 6 | cfl | ⊢ ⌊ | |
| 7 | 1 | cv | ⊢ 𝑥 |
| 8 | 7 6 | cfv | ⊢ ( ⌊ ‘ 𝑥 ) |
| 9 | 4 8 5 | co | ⊢ ( 1 ... ( ⌊ ‘ 𝑥 ) ) |
| 10 | cvma | ⊢ Λ | |
| 11 | 3 | cv | ⊢ 𝑛 |
| 12 | 11 10 | cfv | ⊢ ( Λ ‘ 𝑛 ) |
| 13 | 9 12 3 | csu | ⊢ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 ) |
| 14 | 1 2 13 | cmpt | ⊢ ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 ) ) |
| 15 | 0 14 | wceq | ⊢ ψ = ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 ) ) |