This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a uniform structure. Definition 1 of BourbakiTop1 p. II.1. A uniform structure is used to give a generalization of the idea of Cauchy's sequence. This definition is analogous to TopOn . Elements of an uniform structure are called entourages. (Contributed by FL, 29-May-2014) (Revised by Thierry Arnoux, 15-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ust | |- UnifOn = ( x e. _V |-> { u | ( u C_ ~P ( x X. x ) /\ ( x X. x ) e. u /\ A. v e. u ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cust | |- UnifOn |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | vu | |- u |
|
| 4 | 3 | cv | |- u |
| 5 | 1 | cv | |- x |
| 6 | 5 5 | cxp | |- ( x X. x ) |
| 7 | 6 | cpw | |- ~P ( x X. x ) |
| 8 | 4 7 | wss | |- u C_ ~P ( x X. x ) |
| 9 | 6 4 | wcel | |- ( x X. x ) e. u |
| 10 | vv | |- v |
|
| 11 | vw | |- w |
|
| 12 | 10 | cv | |- v |
| 13 | 11 | cv | |- w |
| 14 | 12 13 | wss | |- v C_ w |
| 15 | 13 4 | wcel | |- w e. u |
| 16 | 14 15 | wi | |- ( v C_ w -> w e. u ) |
| 17 | 16 11 7 | wral | |- A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) |
| 18 | 12 13 | cin | |- ( v i^i w ) |
| 19 | 18 4 | wcel | |- ( v i^i w ) e. u |
| 20 | 19 11 4 | wral | |- A. w e. u ( v i^i w ) e. u |
| 21 | cid | |- _I |
|
| 22 | 21 5 | cres | |- ( _I |` x ) |
| 23 | 22 12 | wss | |- ( _I |` x ) C_ v |
| 24 | 12 | ccnv | |- `' v |
| 25 | 24 4 | wcel | |- `' v e. u |
| 26 | 13 13 | ccom | |- ( w o. w ) |
| 27 | 26 12 | wss | |- ( w o. w ) C_ v |
| 28 | 27 11 4 | wrex | |- E. w e. u ( w o. w ) C_ v |
| 29 | 23 25 28 | w3a | |- ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) |
| 30 | 17 20 29 | w3a | |- ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) |
| 31 | 30 10 4 | wral | |- A. v e. u ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) |
| 32 | 8 9 31 | w3a | |- ( u C_ ~P ( x X. x ) /\ ( x X. x ) e. u /\ A. v e. u ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) |
| 33 | 32 3 | cab | |- { u | ( u C_ ~P ( x X. x ) /\ ( x X. x ) e. u /\ A. v e. u ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) } |
| 34 | 1 2 33 | cmpt | |- ( x e. _V |-> { u | ( u C_ ~P ( x X. x ) /\ ( x X. x ) e. u /\ A. v e. u ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) } ) |
| 35 | 0 34 | wceq | |- UnifOn = ( x e. _V |-> { u | ( u C_ ~P ( x X. x ) /\ ( x X. x ) e. u /\ A. v e. u ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) } ) |