This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a uniform space, i.e. a base set with an uniform structure and its induced topology. Derived from definition 3 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-usp | ⊢ UnifSp = { 𝑓 ∣ ( ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) ∧ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cusp | ⊢ UnifSp | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cuss | ⊢ UnifSt | |
| 3 | 1 | cv | ⊢ 𝑓 |
| 4 | 3 2 | cfv | ⊢ ( UnifSt ‘ 𝑓 ) |
| 5 | cust | ⊢ UnifOn | |
| 6 | cbs | ⊢ Base | |
| 7 | 3 6 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 8 | 7 5 | cfv | ⊢ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) |
| 9 | 4 8 | wcel | ⊢ ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) |
| 10 | ctopn | ⊢ TopOpen | |
| 11 | 3 10 | cfv | ⊢ ( TopOpen ‘ 𝑓 ) |
| 12 | cutop | ⊢ unifTop | |
| 13 | 4 12 | cfv | ⊢ ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) |
| 14 | 11 13 | wceq | ⊢ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) |
| 15 | 9 14 | wa | ⊢ ( ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) ∧ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) ) |
| 16 | 15 1 | cab | ⊢ { 𝑓 ∣ ( ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) ∧ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) ) } |
| 17 | 0 16 | wceq | ⊢ UnifSp = { 𝑓 ∣ ( ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) ∧ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) ) } |