This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the uniform convergence of a sequence of functions. Here F ( ~>uS ) G if F is a sequence of functions F ( n ) , n e. NN defined on S and G is a function on S , and for every 0 < x there is a j such that the functions F ( k ) for j <_ k are all uniformly within x of G on the domain S . Compare with df-clim . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ulm | |- ~~>u = ( s e. _V |-> { <. f , y >. | E. n e. ZZ ( f : ( ZZ>= ` n ) --> ( CC ^m s ) /\ y : s --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. s ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | culm | |- ~~>u |
|
| 1 | vs | |- s |
|
| 2 | cvv | |- _V |
|
| 3 | vf | |- f |
|
| 4 | vy | |- y |
|
| 5 | vn | |- n |
|
| 6 | cz | |- ZZ |
|
| 7 | 3 | cv | |- f |
| 8 | cuz | |- ZZ>= |
|
| 9 | 5 | cv | |- n |
| 10 | 9 8 | cfv | |- ( ZZ>= ` n ) |
| 11 | cc | |- CC |
|
| 12 | cmap | |- ^m |
|
| 13 | 1 | cv | |- s |
| 14 | 11 13 12 | co | |- ( CC ^m s ) |
| 15 | 10 14 7 | wf | |- f : ( ZZ>= ` n ) --> ( CC ^m s ) |
| 16 | 4 | cv | |- y |
| 17 | 13 11 16 | wf | |- y : s --> CC |
| 18 | vx | |- x |
|
| 19 | crp | |- RR+ |
|
| 20 | vj | |- j |
|
| 21 | vk | |- k |
|
| 22 | 20 | cv | |- j |
| 23 | 22 8 | cfv | |- ( ZZ>= ` j ) |
| 24 | vz | |- z |
|
| 25 | cabs | |- abs |
|
| 26 | 21 | cv | |- k |
| 27 | 26 7 | cfv | |- ( f ` k ) |
| 28 | 24 | cv | |- z |
| 29 | 28 27 | cfv | |- ( ( f ` k ) ` z ) |
| 30 | cmin | |- - |
|
| 31 | 28 16 | cfv | |- ( y ` z ) |
| 32 | 29 31 30 | co | |- ( ( ( f ` k ) ` z ) - ( y ` z ) ) |
| 33 | 32 25 | cfv | |- ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) |
| 34 | clt | |- < |
|
| 35 | 18 | cv | |- x |
| 36 | 33 35 34 | wbr | |- ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x |
| 37 | 36 24 13 | wral | |- A. z e. s ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x |
| 38 | 37 21 23 | wral | |- A. k e. ( ZZ>= ` j ) A. z e. s ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x |
| 39 | 38 20 10 | wrex | |- E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. s ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x |
| 40 | 39 18 19 | wral | |- A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. s ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x |
| 41 | 15 17 40 | w3a | |- ( f : ( ZZ>= ` n ) --> ( CC ^m s ) /\ y : s --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. s ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x ) |
| 42 | 41 5 6 | wrex | |- E. n e. ZZ ( f : ( ZZ>= ` n ) --> ( CC ^m s ) /\ y : s --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. s ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x ) |
| 43 | 42 3 4 | copab | |- { <. f , y >. | E. n e. ZZ ( f : ( ZZ>= ` n ) --> ( CC ^m s ) /\ y : s --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. s ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x ) } |
| 44 | 1 2 43 | cmpt | |- ( s e. _V |-> { <. f , y >. | E. n e. ZZ ( f : ( ZZ>= ` n ) --> ( CC ^m s ) /\ y : s --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. s ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x ) } ) |
| 45 | 0 44 | wceq | |- ~~>u = ( s e. _V |-> { <. f , y >. | E. n e. ZZ ( f : ( ZZ>= ` n ) --> ( CC ^m s ) /\ y : s --> CC /\ A. x e. RR+ E. j e. ( ZZ>= ` n ) A. k e. ( ZZ>= ` j ) A. z e. s ( abs ` ( ( ( f ` k ) ` z ) - ( y ` z ) ) ) < x ) } ) |