This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposss | ⊢ ( 𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1 | ⊢ ( 𝐹 ⊆ 𝐺 → ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) | |
| 2 | dmss | ⊢ ( 𝐹 ⊆ 𝐺 → dom 𝐹 ⊆ dom 𝐺 ) | |
| 3 | cnvss | ⊢ ( dom 𝐹 ⊆ dom 𝐺 → ◡ dom 𝐹 ⊆ ◡ dom 𝐺 ) | |
| 4 | unss1 | ⊢ ( ◡ dom 𝐹 ⊆ ◡ dom 𝐺 → ( ◡ dom 𝐹 ∪ { ∅ } ) ⊆ ( ◡ dom 𝐺 ∪ { ∅ } ) ) | |
| 5 | resmpt | ⊢ ( ( ◡ dom 𝐹 ∪ { ∅ } ) ⊆ ( ◡ dom 𝐺 ∪ { ∅ } ) → ( ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 6 | 2 3 4 5 | 4syl | ⊢ ( 𝐹 ⊆ 𝐺 → ( ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 7 | resss | ⊢ ( ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ⊆ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) | |
| 8 | 6 7 | eqsstrrdi | ⊢ ( 𝐹 ⊆ 𝐺 → ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 9 | coss2 | ⊢ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) → ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐹 ⊆ 𝐺 → ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
| 11 | 1 10 | sstrd | ⊢ ( 𝐹 ⊆ 𝐺 → ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
| 12 | df-tpos | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 13 | df-tpos | ⊢ tpos 𝐺 = ( 𝐺 ∘ ( 𝑥 ∈ ( ◡ dom 𝐺 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 14 | 11 12 13 | 3sstr4g | ⊢ ( 𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺 ) |