This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of totally bounded metrics. A metric space is totally bounded iff it can be covered by a finite number of balls of any given radius. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-totbnd | |- TotBnd = ( x e. _V |-> { m e. ( Met ` x ) | A. d e. RR+ E. v e. Fin ( U. v = x /\ A. b e. v E. y e. x b = ( y ( ball ` m ) d ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctotbnd | |- TotBnd |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | vm | |- m |
|
| 4 | cmet | |- Met |
|
| 5 | 1 | cv | |- x |
| 6 | 5 4 | cfv | |- ( Met ` x ) |
| 7 | vd | |- d |
|
| 8 | crp | |- RR+ |
|
| 9 | vv | |- v |
|
| 10 | cfn | |- Fin |
|
| 11 | 9 | cv | |- v |
| 12 | 11 | cuni | |- U. v |
| 13 | 12 5 | wceq | |- U. v = x |
| 14 | vb | |- b |
|
| 15 | vy | |- y |
|
| 16 | 14 | cv | |- b |
| 17 | 15 | cv | |- y |
| 18 | cbl | |- ball |
|
| 19 | 3 | cv | |- m |
| 20 | 19 18 | cfv | |- ( ball ` m ) |
| 21 | 7 | cv | |- d |
| 22 | 17 21 20 | co | |- ( y ( ball ` m ) d ) |
| 23 | 16 22 | wceq | |- b = ( y ( ball ` m ) d ) |
| 24 | 23 15 5 | wrex | |- E. y e. x b = ( y ( ball ` m ) d ) |
| 25 | 24 14 11 | wral | |- A. b e. v E. y e. x b = ( y ( ball ` m ) d ) |
| 26 | 13 25 | wa | |- ( U. v = x /\ A. b e. v E. y e. x b = ( y ( ball ` m ) d ) ) |
| 27 | 26 9 10 | wrex | |- E. v e. Fin ( U. v = x /\ A. b e. v E. y e. x b = ( y ( ball ` m ) d ) ) |
| 28 | 27 7 8 | wral | |- A. d e. RR+ E. v e. Fin ( U. v = x /\ A. b e. v E. y e. x b = ( y ( ball ` m ) d ) ) |
| 29 | 28 3 6 | crab | |- { m e. ( Met ` x ) | A. d e. RR+ E. v e. Fin ( U. v = x /\ A. b e. v E. y e. x b = ( y ( ball ` m ) d ) ) } |
| 30 | 1 2 29 | cmpt | |- ( x e. _V |-> { m e. ( Met ` x ) | A. d e. RR+ E. v e. Fin ( U. v = x /\ A. b e. v E. y e. x b = ( y ( ball ` m ) d ) ) } ) |
| 31 | 0 30 | wceq | |- TotBnd = ( x e. _V |-> { m e. ( Met ` x ) | A. d e. RR+ E. v e. Fin ( U. v = x /\ A. b e. v E. y e. x b = ( y ( ball ` m ) d ) ) } ) |