This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of totally ordered sets (tosets). (Contributed by FL, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-toset | |- Toset = { f e. Poset | [. ( Base ` f ) / b ]. [. ( le ` f ) / r ]. A. x e. b A. y e. b ( x r y \/ y r x ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctos | |- Toset |
|
| 1 | vf | |- f |
|
| 2 | cpo | |- Poset |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- f |
| 5 | 4 3 | cfv | |- ( Base ` f ) |
| 6 | vb | |- b |
|
| 7 | cple | |- le |
|
| 8 | 4 7 | cfv | |- ( le ` f ) |
| 9 | vr | |- r |
|
| 10 | vx | |- x |
|
| 11 | 6 | cv | |- b |
| 12 | vy | |- y |
|
| 13 | 10 | cv | |- x |
| 14 | 9 | cv | |- r |
| 15 | 12 | cv | |- y |
| 16 | 13 15 14 | wbr | |- x r y |
| 17 | 15 13 14 | wbr | |- y r x |
| 18 | 16 17 | wo | |- ( x r y \/ y r x ) |
| 19 | 18 12 11 | wral | |- A. y e. b ( x r y \/ y r x ) |
| 20 | 19 10 11 | wral | |- A. x e. b A. y e. b ( x r y \/ y r x ) |
| 21 | 20 9 8 | wsbc | |- [. ( le ` f ) / r ]. A. x e. b A. y e. b ( x r y \/ y r x ) |
| 22 | 21 6 5 | wsbc | |- [. ( Base ` f ) / b ]. [. ( le ` f ) / r ]. A. x e. b A. y e. b ( x r y \/ y r x ) |
| 23 | 22 1 2 | crab | |- { f e. Poset | [. ( Base ` f ) / b ]. [. ( le ` f ) / r ]. A. x e. b A. y e. b ( x r y \/ y r x ) } |
| 24 | 0 23 | wceq | |- Toset = { f e. Poset | [. ( Base ` f ) / b ]. [. ( le ` f ) / r ]. A. x e. b A. y e. b ( x r y \/ y r x ) } |