This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define subspace sum in SH . See shsval , shsval2i , and shsval3i for its value. (Contributed by NM, 16-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-shs | ⊢ +ℋ = ( 𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ ( 𝑥 × 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cph | ⊢ +ℋ | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | csh | ⊢ Sℋ | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | cva | ⊢ +ℎ | |
| 5 | 1 | cv | ⊢ 𝑥 |
| 6 | 3 | cv | ⊢ 𝑦 |
| 7 | 5 6 | cxp | ⊢ ( 𝑥 × 𝑦 ) |
| 8 | 4 7 | cima | ⊢ ( +ℎ “ ( 𝑥 × 𝑦 ) ) |
| 9 | 1 3 2 2 8 | cmpo | ⊢ ( 𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ ( 𝑥 × 𝑦 ) ) ) |
| 10 | 0 9 | wceq | ⊢ +ℋ = ( 𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ ( 𝑥 × 𝑦 ) ) ) |