This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Define the ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011)
|
|
Ref |
Expression |
|
Assertion |
df-risc |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crisc |
|
| 1 |
|
vr |
|
| 2 |
|
vs |
|
| 3 |
1
|
cv |
|
| 4 |
|
crngo |
|
| 5 |
3 4
|
wcel |
|
| 6 |
2
|
cv |
|
| 7 |
6 4
|
wcel |
|
| 8 |
5 7
|
wa |
|
| 9 |
|
vf |
|
| 10 |
9
|
cv |
|
| 11 |
|
crngoiso |
|
| 12 |
3 6 11
|
co |
|
| 13 |
10 12
|
wcel |
|
| 14 |
13 9
|
wex |
|
| 15 |
8 14
|
wa |
|
| 16 |
15 1 2
|
copab |
|
| 17 |
0 16
|
wceq |
|