This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define class of all (unital) rings. A unital ring is a set equipped with two everywhere-defined internal operations, whose first one is an additive group structure and the second one is a multiplicative monoid structure, and where the addition is left- and right-distributive for the multiplication. Definition 1 in BourbakiAlg1 p. 92 or definition of a ring with identity in part Preliminaries of Roman p. 19. So that the additive structure must be abelian (see ringcom ), care must be taken that in the case of a non-unital ring, the commutativity of addition must be postulated and cannot be proved from the other conditions. Therefore, it can be shown that a unital ring is a non-unital ring ( ringrng ) only after ringabl was proven. (Contributed by NM, 18-Oct-2012) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ring | |- Ring = { f e. Grp | ( ( mulGrp ` f ) e. Mnd /\ [. ( Base ` f ) / r ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. r A. y e. r A. z e. r ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crg | |- Ring |
|
| 1 | vf | |- f |
|
| 2 | cgrp | |- Grp |
|
| 3 | cmgp | |- mulGrp |
|
| 4 | 1 | cv | |- f |
| 5 | 4 3 | cfv | |- ( mulGrp ` f ) |
| 6 | cmnd | |- Mnd |
|
| 7 | 5 6 | wcel | |- ( mulGrp ` f ) e. Mnd |
| 8 | cbs | |- Base |
|
| 9 | 4 8 | cfv | |- ( Base ` f ) |
| 10 | vr | |- r |
|
| 11 | cplusg | |- +g |
|
| 12 | 4 11 | cfv | |- ( +g ` f ) |
| 13 | vp | |- p |
|
| 14 | cmulr | |- .r |
|
| 15 | 4 14 | cfv | |- ( .r ` f ) |
| 16 | vt | |- t |
|
| 17 | vx | |- x |
|
| 18 | 10 | cv | |- r |
| 19 | vy | |- y |
|
| 20 | vz | |- z |
|
| 21 | 17 | cv | |- x |
| 22 | 16 | cv | |- t |
| 23 | 19 | cv | |- y |
| 24 | 13 | cv | |- p |
| 25 | 20 | cv | |- z |
| 26 | 23 25 24 | co | |- ( y p z ) |
| 27 | 21 26 22 | co | |- ( x t ( y p z ) ) |
| 28 | 21 23 22 | co | |- ( x t y ) |
| 29 | 21 25 22 | co | |- ( x t z ) |
| 30 | 28 29 24 | co | |- ( ( x t y ) p ( x t z ) ) |
| 31 | 27 30 | wceq | |- ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) |
| 32 | 21 23 24 | co | |- ( x p y ) |
| 33 | 32 25 22 | co | |- ( ( x p y ) t z ) |
| 34 | 23 25 22 | co | |- ( y t z ) |
| 35 | 29 34 24 | co | |- ( ( x t z ) p ( y t z ) ) |
| 36 | 33 35 | wceq | |- ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) |
| 37 | 31 36 | wa | |- ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) |
| 38 | 37 20 18 | wral | |- A. z e. r ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) |
| 39 | 38 19 18 | wral | |- A. y e. r A. z e. r ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) |
| 40 | 39 17 18 | wral | |- A. x e. r A. y e. r A. z e. r ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) |
| 41 | 40 16 15 | wsbc | |- [. ( .r ` f ) / t ]. A. x e. r A. y e. r A. z e. r ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) |
| 42 | 41 13 12 | wsbc | |- [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. r A. y e. r A. z e. r ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) |
| 43 | 42 10 9 | wsbc | |- [. ( Base ` f ) / r ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. r A. y e. r A. z e. r ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) |
| 44 | 7 43 | wa | |- ( ( mulGrp ` f ) e. Mnd /\ [. ( Base ` f ) / r ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. r A. y e. r A. z e. r ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) |
| 45 | 44 1 2 | crab | |- { f e. Grp | ( ( mulGrp ` f ) e. Mnd /\ [. ( Base ` f ) / r ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. r A. y e. r A. z e. r ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } |
| 46 | 0 45 | wceq | |- Ring = { f e. Grp | ( ( mulGrp ` f ) e. Mnd /\ [. ( Base ` f ) / r ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. A. x e. r A. y e. r A. z e. r ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } |