This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cring | ⊢ CRing = { 𝑓 ∈ Ring ∣ ( mulGrp ‘ 𝑓 ) ∈ CMnd } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccrg | ⊢ CRing | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | crg | ⊢ Ring | |
| 3 | cmgp | ⊢ mulGrp | |
| 4 | 1 | cv | ⊢ 𝑓 |
| 5 | 4 3 | cfv | ⊢ ( mulGrp ‘ 𝑓 ) |
| 6 | ccmn | ⊢ CMnd | |
| 7 | 5 6 | wcel | ⊢ ( mulGrp ‘ 𝑓 ) ∈ CMnd |
| 8 | 7 1 2 | crab | ⊢ { 𝑓 ∈ Ring ∣ ( mulGrp ‘ 𝑓 ) ∈ CMnd } |
| 9 | 0 8 | wceq | ⊢ CRing = { 𝑓 ∈ Ring ∣ ( mulGrp ‘ 𝑓 ) ∈ CMnd } |