This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define regular spaces. A space is regular if a point and a closed set can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-reg | ⊢ Reg = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | creg | ⊢ Reg | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑗 |
| 5 | vy | ⊢ 𝑦 | |
| 6 | 3 | cv | ⊢ 𝑥 |
| 7 | vz | ⊢ 𝑧 | |
| 8 | 5 | cv | ⊢ 𝑦 |
| 9 | 7 | cv | ⊢ 𝑧 |
| 10 | 8 9 | wcel | ⊢ 𝑦 ∈ 𝑧 |
| 11 | ccl | ⊢ cls | |
| 12 | 4 11 | cfv | ⊢ ( cls ‘ 𝑗 ) |
| 13 | 9 12 | cfv | ⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) |
| 14 | 13 6 | wss | ⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 |
| 15 | 10 14 | wa | ⊢ ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 16 | 15 7 4 | wrex | ⊢ ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 17 | 16 5 6 | wral | ⊢ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 18 | 17 3 4 | wral | ⊢ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 19 | 18 1 2 | crab | ⊢ { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |
| 20 | 0 19 | wceq | ⊢ Reg = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑗 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |