This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define regular spaces. A space is regular if a point and a closed set can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-reg | |- Reg = { j e. Top | A. x e. j A. y e. x E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | creg | |- Reg |
|
| 1 | vj | |- j |
|
| 2 | ctop | |- Top |
|
| 3 | vx | |- x |
|
| 4 | 1 | cv | |- j |
| 5 | vy | |- y |
|
| 6 | 3 | cv | |- x |
| 7 | vz | |- z |
|
| 8 | 5 | cv | |- y |
| 9 | 7 | cv | |- z |
| 10 | 8 9 | wcel | |- y e. z |
| 11 | ccl | |- cls |
|
| 12 | 4 11 | cfv | |- ( cls ` j ) |
| 13 | 9 12 | cfv | |- ( ( cls ` j ) ` z ) |
| 14 | 13 6 | wss | |- ( ( cls ` j ) ` z ) C_ x |
| 15 | 10 14 | wa | |- ( y e. z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 16 | 15 7 4 | wrex | |- E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 17 | 16 5 6 | wral | |- A. y e. x E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 18 | 17 3 4 | wral | |- A. x e. j A. y e. x E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 19 | 18 1 2 | crab | |- { j e. Top | A. x e. j A. y e. x E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x ) } |
| 20 | 0 19 | wceq | |- Reg = { j e. Top | A. x e. j A. y e. x E. z e. j ( y e. z /\ ( ( cls ` j ) ` z ) C_ x ) } |