This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define normal spaces. A space is normal if disjoint closed sets can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nrm | ⊢ Nrm = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnrm | ⊢ Nrm | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑗 |
| 5 | vy | ⊢ 𝑦 | |
| 6 | ccld | ⊢ Clsd | |
| 7 | 4 6 | cfv | ⊢ ( Clsd ‘ 𝑗 ) |
| 8 | 3 | cv | ⊢ 𝑥 |
| 9 | 8 | cpw | ⊢ 𝒫 𝑥 |
| 10 | 7 9 | cin | ⊢ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) |
| 11 | vz | ⊢ 𝑧 | |
| 12 | 5 | cv | ⊢ 𝑦 |
| 13 | 11 | cv | ⊢ 𝑧 |
| 14 | 12 13 | wss | ⊢ 𝑦 ⊆ 𝑧 |
| 15 | ccl | ⊢ cls | |
| 16 | 4 15 | cfv | ⊢ ( cls ‘ 𝑗 ) |
| 17 | 13 16 | cfv | ⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) |
| 18 | 17 8 | wss | ⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 |
| 19 | 14 18 | wa | ⊢ ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 20 | 19 11 4 | wrex | ⊢ ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 21 | 20 5 10 | wral | ⊢ ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 22 | 21 3 4 | wral | ⊢ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
| 23 | 22 1 2 | crab | ⊢ { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |
| 24 | 0 23 | wceq | ⊢ Nrm = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |