This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define set of all projective subspaces. Based on definition of subspace in Holland95 p. 212. (Contributed by NM, 2-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-psubsp | |- PSubSp = ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpsubsp | |- PSubSp |
|
| 1 | vk | |- k |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | 3 | cv | |- s |
| 5 | catm | |- Atoms |
|
| 6 | 1 | cv | |- k |
| 7 | 6 5 | cfv | |- ( Atoms ` k ) |
| 8 | 4 7 | wss | |- s C_ ( Atoms ` k ) |
| 9 | vp | |- p |
|
| 10 | vq | |- q |
|
| 11 | vr | |- r |
|
| 12 | 11 | cv | |- r |
| 13 | cple | |- le |
|
| 14 | 6 13 | cfv | |- ( le ` k ) |
| 15 | 9 | cv | |- p |
| 16 | cjn | |- join |
|
| 17 | 6 16 | cfv | |- ( join ` k ) |
| 18 | 10 | cv | |- q |
| 19 | 15 18 17 | co | |- ( p ( join ` k ) q ) |
| 20 | 12 19 14 | wbr | |- r ( le ` k ) ( p ( join ` k ) q ) |
| 21 | 12 4 | wcel | |- r e. s |
| 22 | 20 21 | wi | |- ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) |
| 23 | 22 11 7 | wral | |- A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) |
| 24 | 23 10 4 | wral | |- A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) |
| 25 | 24 9 4 | wral | |- A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) |
| 26 | 8 25 | wa | |- ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) |
| 27 | 26 3 | cab | |- { s | ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) } |
| 28 | 1 2 27 | cmpt | |- ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) } ) |
| 29 | 0 28 | wceq | |- PSubSp = ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) } ) |