This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
df-po
Metamath Proof Explorer
Definition df-po
Description: Define the strict partial order predicate. Definition of Enderton
p. 168. The expression R Po A means R is a partial order on
A . For example, < Po RR is true, while <_ Po RR is false
( ex-po ). (Contributed by NM , 16-Mar-1997)
Ref
Expression
Assertion
df-po
⊢ R Po A ↔ ∀ x ∈ A ∀ y ∈ A ∀ z ∈ A ¬ x R x ∧ x R y ∧ y R z → x R z
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cR
class R
1
cA
class A
2
1 0
wpo
wff R Po A
3
vx
setvar x
4
vy
setvar y
5
vz
setvar z
6
3
cv
setvar x
7
6 6 0
wbr
wff x R x
8
7
wn
wff ¬ x R x
9
4
cv
setvar y
10
6 9 0
wbr
wff x R y
11
5
cv
setvar z
12
9 11 0
wbr
wff y R z
13
10 12
wa
wff x R y ∧ y R z
14
6 11 0
wbr
wff x R z
15
13 14
wi
wff x R y ∧ y R z → x R z
16
8 15
wa
wff ¬ x R x ∧ x R y ∧ y R z → x R z
17
16 5 1
wral
wff ∀ z ∈ A ¬ x R x ∧ x R y ∧ y R z → x R z
18
17 4 1
wral
wff ∀ y ∈ A ∀ z ∈ A ¬ x R x ∧ x R y ∧ y R z → x R z
19
18 3 1
wral
wff ∀ x ∈ A ∀ y ∈ A ∀ z ∈ A ¬ x R x ∧ x R y ∧ y R z → x R z
20
2 19
wb
wff R Po A ↔ ∀ x ∈ A ∀ y ∈ A ∀ z ∈ A ¬ x R x ∧ x R y ∧ y R z → x R z