This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all complex inner product spaces. An inner product space is a normed vector space whose norm satisfies the parallelogram law (a property that induces an inner product). Based on Exercise 4(b) of ReedSimon p. 63. The vector operation is g , the scalar product is s , and the norm is n . An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ph | |- CPreHilOLD = ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccphlo | |- CPreHilOLD |
|
| 1 | cnv | |- NrmCVec |
|
| 2 | vg | |- g |
|
| 3 | vs | |- s |
|
| 4 | vn | |- n |
|
| 5 | vx | |- x |
|
| 6 | 2 | cv | |- g |
| 7 | 6 | crn | |- ran g |
| 8 | vy | |- y |
|
| 9 | 4 | cv | |- n |
| 10 | 5 | cv | |- x |
| 11 | 8 | cv | |- y |
| 12 | 10 11 6 | co | |- ( x g y ) |
| 13 | 12 9 | cfv | |- ( n ` ( x g y ) ) |
| 14 | cexp | |- ^ |
|
| 15 | c2 | |- 2 |
|
| 16 | 13 15 14 | co | |- ( ( n ` ( x g y ) ) ^ 2 ) |
| 17 | caddc | |- + |
|
| 18 | c1 | |- 1 |
|
| 19 | 18 | cneg | |- -u 1 |
| 20 | 3 | cv | |- s |
| 21 | 19 11 20 | co | |- ( -u 1 s y ) |
| 22 | 10 21 6 | co | |- ( x g ( -u 1 s y ) ) |
| 23 | 22 9 | cfv | |- ( n ` ( x g ( -u 1 s y ) ) ) |
| 24 | 23 15 14 | co | |- ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) |
| 25 | 16 24 17 | co | |- ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) |
| 26 | cmul | |- x. |
|
| 27 | 10 9 | cfv | |- ( n ` x ) |
| 28 | 27 15 14 | co | |- ( ( n ` x ) ^ 2 ) |
| 29 | 11 9 | cfv | |- ( n ` y ) |
| 30 | 29 15 14 | co | |- ( ( n ` y ) ^ 2 ) |
| 31 | 28 30 17 | co | |- ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) |
| 32 | 15 31 26 | co | |- ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) |
| 33 | 25 32 | wceq | |- ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) |
| 34 | 33 8 7 | wral | |- A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) |
| 35 | 34 5 7 | wral | |- A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) |
| 36 | 35 2 3 4 | coprab | |- { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } |
| 37 | 1 36 | cin | |- ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } ) |
| 38 | 0 37 | wceq | |- CPreHilOLD = ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } ) |