This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval . (Contributed by NM, 3-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cls | ⊢ cls = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥 ⊆ 𝑦 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccl | ⊢ cls | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑗 |
| 5 | 4 | cuni | ⊢ ∪ 𝑗 |
| 6 | 5 | cpw | ⊢ 𝒫 ∪ 𝑗 |
| 7 | vy | ⊢ 𝑦 | |
| 8 | ccld | ⊢ Clsd | |
| 9 | 4 8 | cfv | ⊢ ( Clsd ‘ 𝑗 ) |
| 10 | 3 | cv | ⊢ 𝑥 |
| 11 | 7 | cv | ⊢ 𝑦 |
| 12 | 10 11 | wss | ⊢ 𝑥 ⊆ 𝑦 |
| 13 | 12 7 9 | crab | ⊢ { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥 ⊆ 𝑦 } |
| 14 | 13 | cint | ⊢ ∩ { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥 ⊆ 𝑦 } |
| 15 | 3 6 14 | cmpt | ⊢ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥 ⊆ 𝑦 } ) |
| 16 | 1 2 15 | cmpt | ⊢ ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥 ⊆ 𝑦 } ) ) |
| 17 | 0 16 | wceq | ⊢ cls = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥 ⊆ 𝑦 } ) ) |