This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the equivalence relation in a quotient ring or quotient group (where i is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nsg | |- NrmSGrp = ( w e. Grp |-> { s e. ( SubGrp ` w ) | [. ( Base ` w ) / b ]. [. ( +g ` w ) / p ]. A. x e. b A. y e. b ( ( x p y ) e. s <-> ( y p x ) e. s ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnsg | |- NrmSGrp |
|
| 1 | vw | |- w |
|
| 2 | cgrp | |- Grp |
|
| 3 | vs | |- s |
|
| 4 | csubg | |- SubGrp |
|
| 5 | 1 | cv | |- w |
| 6 | 5 4 | cfv | |- ( SubGrp ` w ) |
| 7 | cbs | |- Base |
|
| 8 | 5 7 | cfv | |- ( Base ` w ) |
| 9 | vb | |- b |
|
| 10 | cplusg | |- +g |
|
| 11 | 5 10 | cfv | |- ( +g ` w ) |
| 12 | vp | |- p |
|
| 13 | vx | |- x |
|
| 14 | 9 | cv | |- b |
| 15 | vy | |- y |
|
| 16 | 13 | cv | |- x |
| 17 | 12 | cv | |- p |
| 18 | 15 | cv | |- y |
| 19 | 16 18 17 | co | |- ( x p y ) |
| 20 | 3 | cv | |- s |
| 21 | 19 20 | wcel | |- ( x p y ) e. s |
| 22 | 18 16 17 | co | |- ( y p x ) |
| 23 | 22 20 | wcel | |- ( y p x ) e. s |
| 24 | 21 23 | wb | |- ( ( x p y ) e. s <-> ( y p x ) e. s ) |
| 25 | 24 15 14 | wral | |- A. y e. b ( ( x p y ) e. s <-> ( y p x ) e. s ) |
| 26 | 25 13 14 | wral | |- A. x e. b A. y e. b ( ( x p y ) e. s <-> ( y p x ) e. s ) |
| 27 | 26 12 11 | wsbc | |- [. ( +g ` w ) / p ]. A. x e. b A. y e. b ( ( x p y ) e. s <-> ( y p x ) e. s ) |
| 28 | 27 9 8 | wsbc | |- [. ( Base ` w ) / b ]. [. ( +g ` w ) / p ]. A. x e. b A. y e. b ( ( x p y ) e. s <-> ( y p x ) e. s ) |
| 29 | 28 3 6 | crab | |- { s e. ( SubGrp ` w ) | [. ( Base ` w ) / b ]. [. ( +g ` w ) / p ]. A. x e. b A. y e. b ( ( x p y ) e. s <-> ( y p x ) e. s ) } |
| 30 | 1 2 29 | cmpt | |- ( w e. Grp |-> { s e. ( SubGrp ` w ) | [. ( Base ` w ) / b ]. [. ( +g ` w ) / p ]. A. x e. b A. y e. b ( ( x p y ) e. s <-> ( y p x ) e. s ) } ) |
| 31 | 0 30 | wceq | |- NrmSGrp = ( w e. Grp |-> { s e. ( SubGrp ` w ) | [. ( Base ` w ) / b ]. [. ( +g ` w ) / p ]. A. x e. b A. y e. b ( ( x p y ) e. s <-> ( y p x ) e. s ) } ) |