This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define completely normal spaces. A space is completely normal if all its subspaces are normal. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnrm | ⊢ CNrm = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝒫 ∪ 𝑗 ( 𝑗 ↾t 𝑥 ) ∈ Nrm } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccnrm | ⊢ CNrm | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑗 |
| 5 | 4 | cuni | ⊢ ∪ 𝑗 |
| 6 | 5 | cpw | ⊢ 𝒫 ∪ 𝑗 |
| 7 | crest | ⊢ ↾t | |
| 8 | 3 | cv | ⊢ 𝑥 |
| 9 | 4 8 7 | co | ⊢ ( 𝑗 ↾t 𝑥 ) |
| 10 | cnrm | ⊢ Nrm | |
| 11 | 9 10 | wcel | ⊢ ( 𝑗 ↾t 𝑥 ) ∈ Nrm |
| 12 | 11 3 6 | wral | ⊢ ∀ 𝑥 ∈ 𝒫 ∪ 𝑗 ( 𝑗 ↾t 𝑥 ) ∈ Nrm |
| 13 | 12 1 2 | crab | ⊢ { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝒫 ∪ 𝑗 ( 𝑗 ↾t 𝑥 ) ∈ Nrm } |
| 14 | 0 13 | wceq | ⊢ CNrm = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝒫 ∪ 𝑗 ( 𝑗 ↾t 𝑥 ) ∈ Nrm } |