This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define normal spaces. A space is normal if disjoint closed sets can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nrm | |- Nrm = { j e. Top | A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnrm | |- Nrm |
|
| 1 | vj | |- j |
|
| 2 | ctop | |- Top |
|
| 3 | vx | |- x |
|
| 4 | 1 | cv | |- j |
| 5 | vy | |- y |
|
| 6 | ccld | |- Clsd |
|
| 7 | 4 6 | cfv | |- ( Clsd ` j ) |
| 8 | 3 | cv | |- x |
| 9 | 8 | cpw | |- ~P x |
| 10 | 7 9 | cin | |- ( ( Clsd ` j ) i^i ~P x ) |
| 11 | vz | |- z |
|
| 12 | 5 | cv | |- y |
| 13 | 11 | cv | |- z |
| 14 | 12 13 | wss | |- y C_ z |
| 15 | ccl | |- cls |
|
| 16 | 4 15 | cfv | |- ( cls ` j ) |
| 17 | 13 16 | cfv | |- ( ( cls ` j ) ` z ) |
| 18 | 17 8 | wss | |- ( ( cls ` j ) ` z ) C_ x |
| 19 | 14 18 | wa | |- ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 20 | 19 11 4 | wrex | |- E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 21 | 20 5 10 | wral | |- A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 22 | 21 3 4 | wral | |- A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) |
| 23 | 22 1 2 | crab | |- { j e. Top | A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) } |
| 24 | 0 23 | wceq | |- Nrm = { j e. Top | A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) } |