This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nmfn | |- normfn = ( t e. ( CC ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnmf | |- normfn |
|
| 1 | vt | |- t |
|
| 2 | cc | |- CC |
|
| 3 | cmap | |- ^m |
|
| 4 | chba | |- ~H |
|
| 5 | 2 4 3 | co | |- ( CC ^m ~H ) |
| 6 | vx | |- x |
|
| 7 | vz | |- z |
|
| 8 | cno | |- normh |
|
| 9 | 7 | cv | |- z |
| 10 | 9 8 | cfv | |- ( normh ` z ) |
| 11 | cle | |- <_ |
|
| 12 | c1 | |- 1 |
|
| 13 | 10 12 11 | wbr | |- ( normh ` z ) <_ 1 |
| 14 | 6 | cv | |- x |
| 15 | cabs | |- abs |
|
| 16 | 1 | cv | |- t |
| 17 | 9 16 | cfv | |- ( t ` z ) |
| 18 | 17 15 | cfv | |- ( abs ` ( t ` z ) ) |
| 19 | 14 18 | wceq | |- x = ( abs ` ( t ` z ) ) |
| 20 | 13 19 | wa | |- ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) |
| 21 | 20 7 4 | wrex | |- E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) |
| 22 | 21 6 | cab | |- { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } |
| 23 | cxr | |- RR* |
|
| 24 | clt | |- < |
|
| 25 | 22 23 24 | csup | |- sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } , RR* , < ) |
| 26 | 1 5 25 | cmpt | |- ( t e. ( CC ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } , RR* , < ) ) |
| 27 | 0 26 | wceq | |- normfn = ( t e. ( CC ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( abs ` ( t ` z ) ) ) } , RR* , < ) ) |