This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ms | |- MetSp = { f e. *MetSp | ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cms | |- MetSp |
|
| 1 | vf | |- f |
|
| 2 | cxms | |- *MetSp |
|
| 3 | cds | |- dist |
|
| 4 | 1 | cv | |- f |
| 5 | 4 3 | cfv | |- ( dist ` f ) |
| 6 | cbs | |- Base |
|
| 7 | 4 6 | cfv | |- ( Base ` f ) |
| 8 | 7 7 | cxp | |- ( ( Base ` f ) X. ( Base ` f ) ) |
| 9 | 5 8 | cres | |- ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) |
| 10 | cmet | |- Met |
|
| 11 | 7 10 | cfv | |- ( Met ` ( Base ` f ) ) |
| 12 | 9 11 | wcel | |- ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) |
| 13 | 12 1 2 | crab | |- { f e. *MetSp | ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) } |
| 14 | 0 13 | wceq | |- MetSp = { f e. *MetSp | ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) } |