This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Define inverse of group element. (Contributed by NM, 24-Aug-2011)
|
|
Ref |
Expression |
|
Assertion |
df-minusg |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cminusg |
|
| 1 |
|
vg |
|
| 2 |
|
cvv |
|
| 3 |
|
vx |
|
| 4 |
|
cbs |
|
| 5 |
1
|
cv |
|
| 6 |
5 4
|
cfv |
|
| 7 |
|
vw |
|
| 8 |
7
|
cv |
|
| 9 |
|
cplusg |
|
| 10 |
5 9
|
cfv |
|
| 11 |
3
|
cv |
|
| 12 |
8 11 10
|
co |
|
| 13 |
|
c0g |
|
| 14 |
5 13
|
cfv |
|
| 15 |
12 14
|
wceq |
|
| 16 |
15 7 6
|
crio |
|
| 17 |
3 6 16
|
cmpt |
|
| 18 |
1 2 17
|
cmpt |
|
| 19 |
0 18
|
wceq |
|