This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define inverse of group element. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-minusg | |- invg = ( g e. _V |-> ( x e. ( Base ` g ) |-> ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cminusg | |- invg |
|
| 1 | vg | |- g |
|
| 2 | cvv | |- _V |
|
| 3 | vx | |- x |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- g |
| 6 | 5 4 | cfv | |- ( Base ` g ) |
| 7 | vw | |- w |
|
| 8 | 7 | cv | |- w |
| 9 | cplusg | |- +g |
|
| 10 | 5 9 | cfv | |- ( +g ` g ) |
| 11 | 3 | cv | |- x |
| 12 | 8 11 10 | co | |- ( w ( +g ` g ) x ) |
| 13 | c0g | |- 0g |
|
| 14 | 5 13 | cfv | |- ( 0g ` g ) |
| 15 | 12 14 | wceq | |- ( w ( +g ` g ) x ) = ( 0g ` g ) |
| 16 | 15 7 6 | crio | |- ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) |
| 17 | 3 6 16 | cmpt | |- ( x e. ( Base ` g ) |-> ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) ) |
| 18 | 1 2 17 | cmpt | |- ( g e. _V |-> ( x e. ( Base ` g ) |-> ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) ) ) |
| 19 | 0 18 | wceq | |- invg = ( g e. _V |-> ( x e. ( Base ` g ) |-> ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) ) ) |