This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of measurable functions on the reals. A real function is measurable if the preimage of every open interval is a measurable set (see ismbl ) and a complex function is measurable if the real and imaginary parts of the function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mbf | ⊢ MblFn = { 𝑓 ∈ ( ℂ ↑pm ℝ ) ∣ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmbf | ⊢ MblFn | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cc | ⊢ ℂ | |
| 3 | cpm | ⊢ ↑pm | |
| 4 | cr | ⊢ ℝ | |
| 5 | 2 4 3 | co | ⊢ ( ℂ ↑pm ℝ ) |
| 6 | vx | ⊢ 𝑥 | |
| 7 | cioo | ⊢ (,) | |
| 8 | 7 | crn | ⊢ ran (,) |
| 9 | cre | ⊢ ℜ | |
| 10 | 1 | cv | ⊢ 𝑓 |
| 11 | 9 10 | ccom | ⊢ ( ℜ ∘ 𝑓 ) |
| 12 | 11 | ccnv | ⊢ ◡ ( ℜ ∘ 𝑓 ) |
| 13 | 6 | cv | ⊢ 𝑥 |
| 14 | 12 13 | cima | ⊢ ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) |
| 15 | cvol | ⊢ vol | |
| 16 | 15 | cdm | ⊢ dom vol |
| 17 | 14 16 | wcel | ⊢ ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol |
| 18 | cim | ⊢ ℑ | |
| 19 | 18 10 | ccom | ⊢ ( ℑ ∘ 𝑓 ) |
| 20 | 19 | ccnv | ⊢ ◡ ( ℑ ∘ 𝑓 ) |
| 21 | 20 13 | cima | ⊢ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) |
| 22 | 21 16 | wcel | ⊢ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol |
| 23 | 17 22 | wa | ⊢ ( ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) |
| 24 | 23 6 8 | wral | ⊢ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) |
| 25 | 24 1 5 | crab | ⊢ { 𝑓 ∈ ( ℂ ↑pm ℝ ) ∣ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) } |
| 26 | 0 25 | wceq | ⊢ MblFn = { 𝑓 ∈ ( ℂ ↑pm ℝ ) ∣ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝑓 ) “ 𝑥 ) ∈ dom vol ) } |