This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of measurable functions on the reals. A real function is measurable if the preimage of every open interval is a measurable set (see ismbl ) and a complex function is measurable if the real and imaginary parts of the function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mbf | |- MblFn = { f e. ( CC ^pm RR ) | A. x e. ran (,) ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmbf | |- MblFn |
|
| 1 | vf | |- f |
|
| 2 | cc | |- CC |
|
| 3 | cpm | |- ^pm |
|
| 4 | cr | |- RR |
|
| 5 | 2 4 3 | co | |- ( CC ^pm RR ) |
| 6 | vx | |- x |
|
| 7 | cioo | |- (,) |
|
| 8 | 7 | crn | |- ran (,) |
| 9 | cre | |- Re |
|
| 10 | 1 | cv | |- f |
| 11 | 9 10 | ccom | |- ( Re o. f ) |
| 12 | 11 | ccnv | |- `' ( Re o. f ) |
| 13 | 6 | cv | |- x |
| 14 | 12 13 | cima | |- ( `' ( Re o. f ) " x ) |
| 15 | cvol | |- vol |
|
| 16 | 15 | cdm | |- dom vol |
| 17 | 14 16 | wcel | |- ( `' ( Re o. f ) " x ) e. dom vol |
| 18 | cim | |- Im |
|
| 19 | 18 10 | ccom | |- ( Im o. f ) |
| 20 | 19 | ccnv | |- `' ( Im o. f ) |
| 21 | 20 13 | cima | |- ( `' ( Im o. f ) " x ) |
| 22 | 21 16 | wcel | |- ( `' ( Im o. f ) " x ) e. dom vol |
| 23 | 17 22 | wa | |- ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) |
| 24 | 23 6 8 | wral | |- A. x e. ran (,) ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) |
| 25 | 24 1 5 | crab | |- { f e. ( CC ^pm RR ) | A. x e. ran (,) ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) } |
| 26 | 0 25 | wceq | |- MblFn = { f e. ( CC ^pm RR ) | A. x e. ran (,) ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) } |