This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Infinity and the extended real number system
df-ltxr
Metamath Proof Explorer
Description: Define 'less than' on the set of extended reals. Definition 12-3.1 of
Gleason p. 173. Note that in our postulates for complex numbers,
is primitive and not necessarily a relation on RR .
(Contributed by NM , 13-Oct-2005)
Ref
Expression
Assertion
df-ltxr
⊢ < = x y | x ∈ ℝ ∧ y ∈ ℝ ∧ x < ℝ y ∪ ℝ ∪ −∞ × +∞ ∪ −∞ × ℝ
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
clt
class <
1
vx
setvar x
2
vy
setvar y
3
1
cv
setvar x
4
cr
class ℝ
5
3 4
wcel
wff x ∈ ℝ
6
2
cv
setvar y
7
6 4
wcel
wff y ∈ ℝ
8
cltrr
class < ℝ
9
3 6 8
wbr
wff x < ℝ y
10
5 7 9
w3a
wff x ∈ ℝ ∧ y ∈ ℝ ∧ x < ℝ y
11
10 1 2
copab
class x y | x ∈ ℝ ∧ y ∈ ℝ ∧ x < ℝ y
12
cmnf
class −∞
13
12
csn
class −∞
14
4 13
cun
class ℝ ∪ −∞
15
cpnf
class +∞
16
15
csn
class +∞
17
14 16
cxp
class ℝ ∪ −∞ × +∞
18
13 4
cxp
class −∞ × ℝ
19
17 18
cun
class ℝ ∪ −∞ × +∞ ∪ −∞ × ℝ
20
11 19
cun
class x y | x ∈ ℝ ∧ y ∈ ℝ ∧ x < ℝ y ∪ ℝ ∪ −∞ × +∞ ∪ −∞ × ℝ
21
0 20
wceq
wff < = x y | x ∈ ℝ ∧ y ∈ ℝ ∧ x < ℝ y ∪ ℝ ∪ −∞ × +∞ ∪ −∞ × ℝ