This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function on topologies whose value is the set of limit points of the subsets of the base set. See lpval . (Contributed by NM, 10-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lp | |- limPt = ( j e. Top |-> ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clp | |- limPt |
|
| 1 | vj | |- j |
|
| 2 | ctop | |- Top |
|
| 3 | vx | |- x |
|
| 4 | 1 | cv | |- j |
| 5 | 4 | cuni | |- U. j |
| 6 | 5 | cpw | |- ~P U. j |
| 7 | vy | |- y |
|
| 8 | 7 | cv | |- y |
| 9 | ccl | |- cls |
|
| 10 | 4 9 | cfv | |- ( cls ` j ) |
| 11 | 3 | cv | |- x |
| 12 | 8 | csn | |- { y } |
| 13 | 11 12 | cdif | |- ( x \ { y } ) |
| 14 | 13 10 | cfv | |- ( ( cls ` j ) ` ( x \ { y } ) ) |
| 15 | 8 14 | wcel | |- y e. ( ( cls ` j ) ` ( x \ { y } ) ) |
| 16 | 15 7 | cab | |- { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } |
| 17 | 3 6 16 | cmpt | |- ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) |
| 18 | 1 2 17 | cmpt | |- ( j e. Top |-> ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) ) |
| 19 | 0 18 | wceq | |- limPt = ( j e. Top |-> ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) ) |