This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of linear operators on Hilbert space. (See df-hosum for definition of operator.) (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lnop | |- LinOp = { t e. ( ~H ^m ~H ) | A. x e. CC A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clo | |- LinOp |
|
| 1 | vt | |- t |
|
| 2 | chba | |- ~H |
|
| 3 | cmap | |- ^m |
|
| 4 | 2 2 3 | co | |- ( ~H ^m ~H ) |
| 5 | vx | |- x |
|
| 6 | cc | |- CC |
|
| 7 | vy | |- y |
|
| 8 | vz | |- z |
|
| 9 | 1 | cv | |- t |
| 10 | 5 | cv | |- x |
| 11 | csm | |- .h |
|
| 12 | 7 | cv | |- y |
| 13 | 10 12 11 | co | |- ( x .h y ) |
| 14 | cva | |- +h |
|
| 15 | 8 | cv | |- z |
| 16 | 13 15 14 | co | |- ( ( x .h y ) +h z ) |
| 17 | 16 9 | cfv | |- ( t ` ( ( x .h y ) +h z ) ) |
| 18 | 12 9 | cfv | |- ( t ` y ) |
| 19 | 10 18 11 | co | |- ( x .h ( t ` y ) ) |
| 20 | 15 9 | cfv | |- ( t ` z ) |
| 21 | 19 20 14 | co | |- ( ( x .h ( t ` y ) ) +h ( t ` z ) ) |
| 22 | 17 21 | wceq | |- ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) |
| 23 | 22 8 2 | wral | |- A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) |
| 24 | 23 7 2 | wral | |- A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) |
| 25 | 24 5 6 | wral | |- A. x e. CC A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) |
| 26 | 25 1 4 | crab | |- { t e. ( ~H ^m ~H ) | A. x e. CC A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) } |
| 27 | 0 26 | wceq | |- LinOp = { t e. ( ~H ^m ~H ) | A. x e. CC A. y e. ~H A. z e. ~H ( t ` ( ( x .h y ) +h z ) ) = ( ( x .h ( t ` y ) ) +h ( t ` z ) ) } |