This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. x e. ( kGenj ) , iff the preimage of x is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-kgen | |- kGen = ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ckgen | |- kGen |
|
| 1 | vj | |- j |
|
| 2 | ctop | |- Top |
|
| 3 | vx | |- x |
|
| 4 | 1 | cv | |- j |
| 5 | 4 | cuni | |- U. j |
| 6 | 5 | cpw | |- ~P U. j |
| 7 | vk | |- k |
|
| 8 | crest | |- |`t |
|
| 9 | 7 | cv | |- k |
| 10 | 4 9 8 | co | |- ( j |`t k ) |
| 11 | ccmp | |- Comp |
|
| 12 | 10 11 | wcel | |- ( j |`t k ) e. Comp |
| 13 | 3 | cv | |- x |
| 14 | 13 9 | cin | |- ( x i^i k ) |
| 15 | 14 10 | wcel | |- ( x i^i k ) e. ( j |`t k ) |
| 16 | 12 15 | wi | |- ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) |
| 17 | 16 7 6 | wral | |- A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) |
| 18 | 17 3 6 | crab | |- { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } |
| 19 | 1 2 18 | cmpt | |- ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } ) |
| 20 | 0 19 | wceq | |- kGen = ( j e. Top |-> { x e. ~P U. j | A. k e. ~P U. j ( ( j |`t k ) e. Comp -> ( x i^i k ) e. ( j |`t k ) ) } ) |