This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC CATEGORY THEORY
Categories
Sections, inverses, isomorphisms
df-iso
Metamath Proof Explorer
Description: Function returning the isomorphisms of the category c . Definition
3.8 of Adamek p. 28, and definition in Lang p. 54. (Contributed by FL , 9-Jun-2014) (Revised by Mario Carneiro , 2-Jan-2017)
Ref
Expression
Assertion
df-iso
⊢ Iso = c ∈ Cat ⟼ x ∈ V ⟼ dom ⁡ x ∘ Inv ⁡ c
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ciso
class Iso
1
vc
setvar c
2
ccat
class Cat
3
vx
setvar x
4
cvv
class V
5
3
cv
setvar x
6
5
cdm
class dom ⁡ x
7
3 4 6
cmpt
class x ∈ V ⟼ dom ⁡ x
8
cinv
class Inv
9
1
cv
setvar c
10
9 8
cfv
class Inv ⁡ c
11
7 10
ccom
class x ∈ V ⟼ dom ⁡ x ∘ Inv ⁡ c
12
1 2 11
cmpt
class c ∈ Cat ⟼ x ∈ V ⟼ dom ⁡ x ∘ Inv ⁡ c
13
0 12
wceq
wff Iso = c ∈ Cat ⟼ x ∈ V ⟼ dom ⁡ x ∘ Inv ⁡ c