This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ina | ⊢ Inacc = { 𝑥 ∣ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cina | ⊢ Inacc | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | 1 | cv | ⊢ 𝑥 |
| 3 | c0 | ⊢ ∅ | |
| 4 | 2 3 | wne | ⊢ 𝑥 ≠ ∅ |
| 5 | ccf | ⊢ cf | |
| 6 | 2 5 | cfv | ⊢ ( cf ‘ 𝑥 ) |
| 7 | 6 2 | wceq | ⊢ ( cf ‘ 𝑥 ) = 𝑥 |
| 8 | vy | ⊢ 𝑦 | |
| 9 | 8 | cv | ⊢ 𝑦 |
| 10 | 9 | cpw | ⊢ 𝒫 𝑦 |
| 11 | csdm | ⊢ ≺ | |
| 12 | 10 2 11 | wbr | ⊢ 𝒫 𝑦 ≺ 𝑥 |
| 13 | 12 8 2 | wral | ⊢ ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 |
| 14 | 4 7 13 | w3a | ⊢ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 ) |
| 15 | 14 1 | cab | ⊢ { 𝑥 ∣ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 ) } |
| 16 | 0 15 | wceq | ⊢ Inacc = { 𝑥 ∣ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 ) } |