This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Weakly and strongly inaccessible cardinals
df-ina
Metamath Proof Explorer
Description: An ordinal is strongly inaccessible iff it is a regular strong limit
cardinal, which is to say that it dominates the powersets of every
smaller ordinal. (Contributed by Mario Carneiro , 22-Jun-2013)
Ref
Expression
Assertion
df-ina
⊢ Inacc = x | x ≠ ∅ ∧ cf ⁡ x = x ∧ ∀ y ∈ x 𝒫 y ≺ x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cina
class Inacc
1
vx
setvar x
2
1
cv
setvar x
3
c0
class ∅
4
2 3
wne
wff x ≠ ∅
5
ccf
class cf
6
2 5
cfv
class cf ⁡ x
7
6 2
wceq
wff cf ⁡ x = x
8
vy
setvar y
9
8
cv
setvar y
10
9
cpw
class 𝒫 y
11
csdm
class ≺
12
10 2 11
wbr
wff 𝒫 y ≺ x
13
12 8 2
wral
wff ∀ y ∈ x 𝒫 y ≺ x
14
4 7 13
w3a
wff x ≠ ∅ ∧ cf ⁡ x = x ∧ ∀ y ∈ x 𝒫 y ≺ x
15
14 1
cab
class x | x ≠ ∅ ∧ cf ⁡ x = x ∧ ∀ y ∈ x 𝒫 y ≺ x
16
0 15
wceq
wff Inacc = x | x ≠ ∅ ∧ cf ⁡ x = x ∧ ∀ y ∈ x 𝒫 y ≺ x