This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Quantifier-free definitions
df-image
Metamath Proof Explorer
Description: Define the image functor. This function takes a set A to a function
x |-> ( A " x ) , providing that the latter exists. See imageval for the derivation. (Contributed by Scott Fenton , 27-Mar-2014)
Ref
Expression
Assertion
df-image
⊢ 𝖨𝗆𝖺𝗀𝖾 A = V × V ∖ ran ⁡ V ⊗ E ∆ E ∘ A -1 ⊗ V
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
class A
1
0
cimage
class 𝖨𝗆𝖺𝗀𝖾 A
2
cvv
class V
3
2 2
cxp
class V × V
4
cep
class E
5
2 4
ctxp
class V ⊗ E
6
0
ccnv
class A -1
7
4 6
ccom
class E ∘ A -1
8
7 2
ctxp
class E ∘ A -1 ⊗ V
9
5 8
csymdif
class V ⊗ E ∆ E ∘ A -1 ⊗ V
10
9
crn
class ran ⁡ V ⊗ E ∆ E ∘ A -1 ⊗ V
11
3 10
cdif
class V × V ∖ ran ⁡ V ⊗ E ∆ E ∘ A -1 ⊗ V
12
1 11
wceq
wff 𝖨𝗆𝖺𝗀𝖾 A = V × V ∖ ran ⁡ V ⊗ E ∆ E ∘ A -1 ⊗ V