This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of integrable functions on the reals. A function is integrable if it is measurable and the integrals of the pieces of the function are all finite. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ibl | |- L^1 = { f e. MblFn | A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) e. RR } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cibl | |- L^1 |
|
| 1 | vf | |- f |
|
| 2 | cmbf | |- MblFn |
|
| 3 | vk | |- k |
|
| 4 | cc0 | |- 0 |
|
| 5 | cfz | |- ... |
|
| 6 | c3 | |- 3 |
|
| 7 | 4 6 5 | co | |- ( 0 ... 3 ) |
| 8 | citg2 | |- S.2 |
|
| 9 | vx | |- x |
|
| 10 | cr | |- RR |
|
| 11 | cre | |- Re |
|
| 12 | 1 | cv | |- f |
| 13 | 9 | cv | |- x |
| 14 | 13 12 | cfv | |- ( f ` x ) |
| 15 | cdiv | |- / |
|
| 16 | ci | |- _i |
|
| 17 | cexp | |- ^ |
|
| 18 | 3 | cv | |- k |
| 19 | 16 18 17 | co | |- ( _i ^ k ) |
| 20 | 14 19 15 | co | |- ( ( f ` x ) / ( _i ^ k ) ) |
| 21 | 20 11 | cfv | |- ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) |
| 22 | vy | |- y |
|
| 23 | 12 | cdm | |- dom f |
| 24 | 13 23 | wcel | |- x e. dom f |
| 25 | cle | |- <_ |
|
| 26 | 22 | cv | |- y |
| 27 | 4 26 25 | wbr | |- 0 <_ y |
| 28 | 24 27 | wa | |- ( x e. dom f /\ 0 <_ y ) |
| 29 | 28 26 4 | cif | |- if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) |
| 30 | 22 21 29 | csb | |- [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) |
| 31 | 9 10 30 | cmpt | |- ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) |
| 32 | 31 8 | cfv | |- ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) |
| 33 | 32 10 | wcel | |- ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) e. RR |
| 34 | 33 3 7 | wral | |- A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) e. RR |
| 35 | 34 1 2 | crab | |- { f e. MblFn | A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) e. RR } |
| 36 | 0 35 | wceq | |- L^1 = { f e. MblFn | A. k e. ( 0 ... 3 ) ( S.2 ` ( x e. RR |-> [_ ( Re ` ( ( f ` x ) / ( _i ^ k ) ) ) / y ]_ if ( ( x e. dom f /\ 0 <_ y ) , y , 0 ) ) ) e. RR } |