This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Operators on complex vector spaces
Definitions and basic properties
df-hmo
Metamath Proof Explorer
Description: Define the set of Hermitian (self-adjoint) operators on a normed complex
vector space (normally a Hilbert space). Although we define it for any
normed vector space for convenience, the definition is meaningful only
for inner product spaces. (Contributed by NM , 26-Jan-2008)
(New usage is discouraged.)
Ref
Expression
Assertion
df-hmo
⊢ HmOp = u ∈ NrmCVec ⟼ t ∈ dom ⁡ u adj u | u adj u ⁡ t = t
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
chmo
class HmOp
1
vu
setvar u
2
cnv
class NrmCVec
3
vt
setvar t
4
1
cv
setvar u
5
caj
class adj
6
4 4 5
co
class u adj u
7
6
cdm
class dom ⁡ u adj u
8
3
cv
setvar t
9
8 6
cfv
class u adj u ⁡ t
10
9 8
wceq
wff u adj u ⁡ t = t
11
10 3 7
crab
class t ∈ dom ⁡ u adj u | u adj u ⁡ t = t
12
1 2 11
cmpt
class u ∈ NrmCVec ⟼ t ∈ dom ⁡ u adj u | u adj u ⁡ t = t
13
0 12
wceq
wff HmOp = u ∈ NrmCVec ⟼ t ∈ dom ⁡ u adj u | u adj u ⁡ t = t