This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism between two graphs is a bijection between the sets of vertices of the two graphs that preserves adjacency, see definition in Diestel p. 3. (Contributed by AV, 19-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-grim | |- GraphIso = ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgrim | |- GraphIso |
|
| 1 | vg | |- g |
|
| 2 | cvv | |- _V |
|
| 3 | vh | |- h |
|
| 4 | vf | |- f |
|
| 5 | 4 | cv | |- f |
| 6 | cvtx | |- Vtx |
|
| 7 | 1 | cv | |- g |
| 8 | 7 6 | cfv | |- ( Vtx ` g ) |
| 9 | 3 | cv | |- h |
| 10 | 9 6 | cfv | |- ( Vtx ` h ) |
| 11 | 8 10 5 | wf1o | |- f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) |
| 12 | vj | |- j |
|
| 13 | ciedg | |- iEdg |
|
| 14 | 7 13 | cfv | |- ( iEdg ` g ) |
| 15 | ve | |- e |
|
| 16 | 9 13 | cfv | |- ( iEdg ` h ) |
| 17 | vd | |- d |
|
| 18 | 12 | cv | |- j |
| 19 | 15 | cv | |- e |
| 20 | 19 | cdm | |- dom e |
| 21 | 17 | cv | |- d |
| 22 | 21 | cdm | |- dom d |
| 23 | 20 22 18 | wf1o | |- j : dom e -1-1-onto-> dom d |
| 24 | vi | |- i |
|
| 25 | 24 | cv | |- i |
| 26 | 25 18 | cfv | |- ( j ` i ) |
| 27 | 26 21 | cfv | |- ( d ` ( j ` i ) ) |
| 28 | 25 19 | cfv | |- ( e ` i ) |
| 29 | 5 28 | cima | |- ( f " ( e ` i ) ) |
| 30 | 27 29 | wceq | |- ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) |
| 31 | 30 24 20 | wral | |- A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) |
| 32 | 23 31 | wa | |- ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) |
| 33 | 32 17 16 | wsbc | |- [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) |
| 34 | 33 15 14 | wsbc | |- [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) |
| 35 | 34 12 | wex | |- E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) |
| 36 | 11 35 | wa | |- ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) |
| 37 | 36 4 | cab | |- { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } |
| 38 | 1 3 2 2 37 | cmpo | |- ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } ) |
| 39 | 0 38 | wceq | |- GraphIso = ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } ) |