This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function returning all the functors from a category t to a category u . Definition 3.17 of Adamek p. 29, and definition in Lang p. 62 ("covariant functor"). Intuitively a functor associates any morphism of t to a morphism of u , any object of t to an object of u , and respects the identity, the composition, the domain and the codomain. Here to capture the idea that a functor associates any object of t to an object of u we write it associates any identity of t to an identity of u which simplifies the definition. According to remark 3.19 in Adamek p. 30, "a functor F : A -> B is technically a family of functions; one from Ob(A) to Ob(B) [here: f, called "the object part" in the following], and for each pair (A,A') of A-objects, one from hom(A,A') to hom(FA, FA') [here: g, called "the morphism part" in the following]". (Contributed by FL, 10-Feb-2008) (Revised by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-func | |- Func = ( t e. Cat , u e. Cat |-> { <. f , g >. | [. ( Base ` t ) / b ]. ( f : b --> ( Base ` u ) /\ g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) /\ A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfunc | |- Func |
|
| 1 | vt | |- t |
|
| 2 | ccat | |- Cat |
|
| 3 | vu | |- u |
|
| 4 | vf | |- f |
|
| 5 | vg | |- g |
|
| 6 | cbs | |- Base |
|
| 7 | 1 | cv | |- t |
| 8 | 7 6 | cfv | |- ( Base ` t ) |
| 9 | vb | |- b |
|
| 10 | 4 | cv | |- f |
| 11 | 9 | cv | |- b |
| 12 | 3 | cv | |- u |
| 13 | 12 6 | cfv | |- ( Base ` u ) |
| 14 | 11 13 10 | wf | |- f : b --> ( Base ` u ) |
| 15 | 5 | cv | |- g |
| 16 | vz | |- z |
|
| 17 | 11 11 | cxp | |- ( b X. b ) |
| 18 | c1st | |- 1st |
|
| 19 | 16 | cv | |- z |
| 20 | 19 18 | cfv | |- ( 1st ` z ) |
| 21 | 20 10 | cfv | |- ( f ` ( 1st ` z ) ) |
| 22 | chom | |- Hom |
|
| 23 | 12 22 | cfv | |- ( Hom ` u ) |
| 24 | c2nd | |- 2nd |
|
| 25 | 19 24 | cfv | |- ( 2nd ` z ) |
| 26 | 25 10 | cfv | |- ( f ` ( 2nd ` z ) ) |
| 27 | 21 26 23 | co | |- ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) |
| 28 | cmap | |- ^m |
|
| 29 | 7 22 | cfv | |- ( Hom ` t ) |
| 30 | 19 29 | cfv | |- ( ( Hom ` t ) ` z ) |
| 31 | 27 30 28 | co | |- ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) |
| 32 | 16 17 31 | cixp | |- X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) |
| 33 | 15 32 | wcel | |- g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) |
| 34 | vx | |- x |
|
| 35 | 34 | cv | |- x |
| 36 | 35 35 15 | co | |- ( x g x ) |
| 37 | ccid | |- Id |
|
| 38 | 7 37 | cfv | |- ( Id ` t ) |
| 39 | 35 38 | cfv | |- ( ( Id ` t ) ` x ) |
| 40 | 39 36 | cfv | |- ( ( x g x ) ` ( ( Id ` t ) ` x ) ) |
| 41 | 12 37 | cfv | |- ( Id ` u ) |
| 42 | 35 10 | cfv | |- ( f ` x ) |
| 43 | 42 41 | cfv | |- ( ( Id ` u ) ` ( f ` x ) ) |
| 44 | 40 43 | wceq | |- ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) |
| 45 | vy | |- y |
|
| 46 | vm | |- m |
|
| 47 | 45 | cv | |- y |
| 48 | 35 47 29 | co | |- ( x ( Hom ` t ) y ) |
| 49 | vn | |- n |
|
| 50 | 47 19 29 | co | |- ( y ( Hom ` t ) z ) |
| 51 | 35 19 15 | co | |- ( x g z ) |
| 52 | 49 | cv | |- n |
| 53 | 35 47 | cop | |- <. x , y >. |
| 54 | cco | |- comp |
|
| 55 | 7 54 | cfv | |- ( comp ` t ) |
| 56 | 53 19 55 | co | |- ( <. x , y >. ( comp ` t ) z ) |
| 57 | 46 | cv | |- m |
| 58 | 52 57 56 | co | |- ( n ( <. x , y >. ( comp ` t ) z ) m ) |
| 59 | 58 51 | cfv | |- ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) |
| 60 | 47 19 15 | co | |- ( y g z ) |
| 61 | 52 60 | cfv | |- ( ( y g z ) ` n ) |
| 62 | 47 10 | cfv | |- ( f ` y ) |
| 63 | 42 62 | cop | |- <. ( f ` x ) , ( f ` y ) >. |
| 64 | 12 54 | cfv | |- ( comp ` u ) |
| 65 | 19 10 | cfv | |- ( f ` z ) |
| 66 | 63 65 64 | co | |- ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) |
| 67 | 35 47 15 | co | |- ( x g y ) |
| 68 | 57 67 | cfv | |- ( ( x g y ) ` m ) |
| 69 | 61 68 66 | co | |- ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) |
| 70 | 59 69 | wceq | |- ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) |
| 71 | 70 49 50 | wral | |- A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) |
| 72 | 71 46 48 | wral | |- A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) |
| 73 | 72 16 11 | wral | |- A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) |
| 74 | 73 45 11 | wral | |- A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) |
| 75 | 44 74 | wa | |- ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) |
| 76 | 75 34 11 | wral | |- A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) |
| 77 | 14 33 76 | w3a | |- ( f : b --> ( Base ` u ) /\ g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) /\ A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) |
| 78 | 77 9 8 | wsbc | |- [. ( Base ` t ) / b ]. ( f : b --> ( Base ` u ) /\ g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) /\ A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) |
| 79 | 78 4 5 | copab | |- { <. f , g >. | [. ( Base ` t ) / b ]. ( f : b --> ( Base ` u ) /\ g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) /\ A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) } |
| 80 | 1 3 2 2 79 | cmpo | |- ( t e. Cat , u e. Cat |-> { <. f , g >. | [. ( Base ` t ) / b ]. ( f : b --> ( Base ` u ) /\ g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) /\ A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) } ) |
| 81 | 0 80 | wceq | |- Func = ( t e. Cat , u e. Cat |-> { <. f , g >. | [. ( Base ` t ) / b ]. ( f : b --> ( Base ` u ) /\ g e. X_ z e. ( b X. b ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` u ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` t ) ` z ) ) /\ A. x e. b ( ( ( x g x ) ` ( ( Id ` t ) ` x ) ) = ( ( Id ` u ) ` ( f ` x ) ) /\ A. y e. b A. z e. b A. m e. ( x ( Hom ` t ) y ) A. n e. ( y ( Hom ` t ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` t ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` u ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) } ) |