This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Quantifier-free definitions
df-fullfun
Metamath Proof Explorer
Description: Define the full function over F . This is a function with domain
_V that always agrees with F for its value. (Contributed by Scott
Fenton , 17-Apr-2014)
Ref
Expression
Assertion
df-fullfun
⊢ 𝖥𝗎𝗅𝗅𝖥𝗎𝗇 F = 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F ∪ V ∖ dom ⁡ 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F × ∅
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cF
class F
1
0
cfullfn
class 𝖥𝗎𝗅𝗅𝖥𝗎𝗇 F
2
0
cfunpart
class 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F
3
cvv
class V
4
2
cdm
class dom ⁡ 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F
5
3 4
cdif
class V ∖ dom ⁡ 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F
6
c0
class ∅
7
6
csn
class ∅
8
5 7
cxp
class V ∖ dom ⁡ 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F × ∅
9
2 8
cun
class 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F ∪ V ∖ dom ⁡ 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F × ∅
10
1 9
wceq
wff 𝖥𝗎𝗅𝗅𝖥𝗎𝗇 F = 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F ∪ V ∖ dom ⁡ 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F × ∅