This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is VII-finite iff it cannot be infinitely well-ordered. Equivalent to definition VII of Levy58 p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fin7 | ⊢ FinVII = { 𝑥 ∣ ¬ ∃ 𝑦 ∈ ( On ∖ ω ) 𝑥 ≈ 𝑦 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfin7 | ⊢ FinVII | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | vy | ⊢ 𝑦 | |
| 3 | con0 | ⊢ On | |
| 4 | com | ⊢ ω | |
| 5 | 3 4 | cdif | ⊢ ( On ∖ ω ) |
| 6 | 1 | cv | ⊢ 𝑥 |
| 7 | cen | ⊢ ≈ | |
| 8 | 2 | cv | ⊢ 𝑦 |
| 9 | 6 8 7 | wbr | ⊢ 𝑥 ≈ 𝑦 |
| 10 | 9 2 5 | wrex | ⊢ ∃ 𝑦 ∈ ( On ∖ ω ) 𝑥 ≈ 𝑦 |
| 11 | 10 | wn | ⊢ ¬ ∃ 𝑦 ∈ ( On ∖ ω ) 𝑥 ≈ 𝑦 |
| 12 | 11 1 | cab | ⊢ { 𝑥 ∣ ¬ ∃ 𝑦 ∈ ( On ∖ ω ) 𝑥 ≈ 𝑦 } |
| 13 | 0 12 | wceq | ⊢ FinVII = { 𝑥 ∣ ¬ ∃ 𝑦 ∈ ( On ∖ ω ) 𝑥 ≈ 𝑦 } |