This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
df-fin7
Metamath Proof Explorer
Description: A set is VII-finite iff it cannot be infinitely well-ordered.
Equivalent to definition VII of Levy58 p. 4. (Contributed by Stefan
O'Rear , 12-Nov-2014)
Ref
Expression
Assertion
df-fin7
⊢ Fin VII = x | ¬ ∃ y ∈ On ∖ ω x ≈ y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cfin7
class Fin VII
1
vx
setvar x
2
vy
setvar y
3
con0
class On
4
com
class ω
5
3 4
cdif
class On ∖ ω
6
1
cv
setvar x
7
cen
class ≈
8
2
cv
setvar y
9
6 8 7
wbr
wff x ≈ y
10
9 2 5
wrex
wff ∃ y ∈ On ∖ ω x ≈ y
11
10
wn
wff ¬ ∃ y ∈ On ∖ ω x ≈ y
12
11 1
cab
class x | ¬ ∃ y ∈ On ∖ ω x ≈ y
13
0 12
wceq
wff Fin VII = x | ¬ ∃ y ∈ On ∖ ω x ≈ y