This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the evaluation map for the univariate polynomial algebra. The function ( S evalSub1 R ) : V --> ( S ^m S ) makes sense when S is a ring and R is a subring of S , and where V is the set of polynomials in ( Poly1R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments to the variable from S into an element of S formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-evls1 | |- evalSub1 = ( s e. _V , r e. ~P ( Base ` s ) |-> [_ ( Base ` s ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub s ) ` r ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ces1 | |- evalSub1 |
|
| 1 | vs | |- s |
|
| 2 | cvv | |- _V |
|
| 3 | vr | |- r |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- s |
| 6 | 5 4 | cfv | |- ( Base ` s ) |
| 7 | 6 | cpw | |- ~P ( Base ` s ) |
| 8 | vb | |- b |
|
| 9 | vx | |- x |
|
| 10 | 8 | cv | |- b |
| 11 | cmap | |- ^m |
|
| 12 | c1o | |- 1o |
|
| 13 | 10 12 11 | co | |- ( b ^m 1o ) |
| 14 | 10 13 11 | co | |- ( b ^m ( b ^m 1o ) ) |
| 15 | 9 | cv | |- x |
| 16 | vy | |- y |
|
| 17 | 16 | cv | |- y |
| 18 | 17 | csn | |- { y } |
| 19 | 12 18 | cxp | |- ( 1o X. { y } ) |
| 20 | 16 10 19 | cmpt | |- ( y e. b |-> ( 1o X. { y } ) ) |
| 21 | 15 20 | ccom | |- ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) |
| 22 | 9 14 21 | cmpt | |- ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) |
| 23 | ces | |- evalSub |
|
| 24 | 12 5 23 | co | |- ( 1o evalSub s ) |
| 25 | 3 | cv | |- r |
| 26 | 25 24 | cfv | |- ( ( 1o evalSub s ) ` r ) |
| 27 | 22 26 | ccom | |- ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub s ) ` r ) ) |
| 28 | 8 6 27 | csb | |- [_ ( Base ` s ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub s ) ` r ) ) |
| 29 | 1 3 2 7 28 | cmpo | |- ( s e. _V , r e. ~P ( Base ` s ) |-> [_ ( Base ` s ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub s ) ` r ) ) ) |
| 30 | 0 29 | wceq | |- evalSub1 = ( s e. _V , r e. ~P ( Base ` s ) |-> [_ ( Base ` s ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub s ) ` r ) ) ) |