This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the n -th derivative operator on functions on the complex numbers. This just iterates the derivative operation according to the last argument. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dvn | ⊢ D𝑛 = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝑓 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdvn | ⊢ D𝑛 | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | cc | ⊢ ℂ | |
| 3 | 2 | cpw | ⊢ 𝒫 ℂ |
| 4 | vf | ⊢ 𝑓 | |
| 5 | cpm | ⊢ ↑pm | |
| 6 | 1 | cv | ⊢ 𝑠 |
| 7 | 2 6 5 | co | ⊢ ( ℂ ↑pm 𝑠 ) |
| 8 | cc0 | ⊢ 0 | |
| 9 | vx | ⊢ 𝑥 | |
| 10 | cvv | ⊢ V | |
| 11 | cdv | ⊢ D | |
| 12 | 9 | cv | ⊢ 𝑥 |
| 13 | 6 12 11 | co | ⊢ ( 𝑠 D 𝑥 ) |
| 14 | 9 10 13 | cmpt | ⊢ ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) |
| 15 | c1st | ⊢ 1st | |
| 16 | 14 15 | ccom | ⊢ ( ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) ∘ 1st ) |
| 17 | cn0 | ⊢ ℕ0 | |
| 18 | 4 | cv | ⊢ 𝑓 |
| 19 | 18 | csn | ⊢ { 𝑓 } |
| 20 | 17 19 | cxp | ⊢ ( ℕ0 × { 𝑓 } ) |
| 21 | 16 20 8 | cseq | ⊢ seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝑓 } ) ) |
| 22 | 1 4 3 7 21 | cmpo | ⊢ ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝑓 } ) ) ) |
| 23 | 0 22 | wceq | ⊢ D𝑛 = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝑓 } ) ) ) |